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Inviscid fluid flow in an accelerating 
cylindrical container 
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The problem of the axially symmetric irrotational flow of an inviscid incom- 
pressible fluid with a free surface in a circular cylindrical container accelerating 
parallel to its axis is considered. A numerical procedure is developed and some 
interesting motions exhibiting the development of breakers, splashing and sus- 
tained oscillations of the surface are obtained by machine computation. 

1. Introduction 
The problem of fluid motion in a cylindrical container of circular cross- 

section due to a time-varying acceleration of the cylinder in the axial direction 
arises in connexion with the study of the dynamics of a liquid propellant in a 
rocket. This was the primary motivation for this study; however, the results 
which describe large amplitude motions of the surface of the fluid are of interest 
in themselves. 

Concus (1962, 1964) considered finite amplitude motion in the two-dimen- 
sional case. Satterlee & Reynolds (1964) give an extensive bibliography of related 
work in this field and discuss the assumptions which are made in this paper; 
in particular, the dependence of the stability of the symmetric mode on the 
Bond number and contact angle is shown in their figure 6. The method developed 
in this paper is valid in both the stable and unstable regions and examples of 
both types of motion are computed. 

A numerical procedure is designed for the simulation on a computer of the 
behaviour of the surface of the fluid. The method of solving the Eulerian equations 
is based on a Fourier series representation for the velocity potential with time 
dependent coefficients which are numerically determined from the free surface 
boundary conditions. Simultaneously, the motion of the free surface is deter- 
mined using the method of characteristics which amounts to following the motion 
of individual fluid particles on the surface. Several interesting types of surface 
behaviour are obtained for various initial surface shapes depending on the 
acceleration and the surface tension. These results are exhibited graphically 
in the figures at the end of the paper. A detailed comparison with experimental 
results has not been made; however, recent unpublished work of Satterlee 
(private communication) shows at least qualitative agreement with the results 
of this paper. 

2. Formulation of the equations of motion 
Let v ( r , z , t )  be the axially symmetric velocity of a point (r,O,z) in the fluid 

at time t .  It is assumed that the flow is irrotational, i.e. that Q x v = 0, so that 
20 Fluid Mech. 22 
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there exists a velocity potential $(r,z,  t) such that v = V$. The geometry is 
indicated in figure 1. 

- 1.0 

FIGURE 1. Co-ordinate system and hemispherical initial shape with 
H = 2.0 and r, = 1.0. 

Since the flow is assumed incompressible, the equation of continuity implies 
that V . v = 0 and hence that the velocity potential satisfies Laplace’s equation in 
the interior of the fluid; i.e. 

fort > 0, 0 < r < r,,, 0 < 0 < 2n, 0 < z < f ( ~ ,  t )  where z = f ( r , t )  is the equation 
of the free surface. The normal derivative is assumed to be zero on the fixed 
boundaries, i.e. 

$ J O , z , t )  = 0 for 0 < z <f(O,t) (t  2 0 ) ,  

$r(rO, z, t )  = 0 for 0 < z < f ( ro ,  t )  (t 2 0), 

q$(r, 0, t )  = 0 for 0 < r < r, (t 2 0). 

$ w + ( 1 / r ) $ r + $ z z  = 0 (1) 

(2) I 
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The free surface boundary condition follows from Euler’s equation for in- 
viscid flow 

v,+(v.V)v = - (vP/p)+g 

(Landau & Lifshitz 1959, p. 3), where P(r,  z, t )  is the pressure at the point (r,  0 )  
at time t and p is the density constant for the incompressible flow. This equation 
is identically satisfied in the interior if V x v  = 0 (Landau & Lifshitz 1959, 
p. 21). With the acceleration g(z,t)  written as the gradient of a potential 
U ( z ,  t )  = a(t) goz where go has the dimensions of acceleration, Euler’s equation 
has as a first integral Bernoulli’s equation 

v2 P 
2 P  

$*+- +-- u = C(t). (3) 

If, for the present, surface tension is neglected, the fluid pressure P(r,z, t)  
at the surface z = f ( r ,  t )  is equal to a constant Po, the gas pressure at the fluid gas 
interface. Bernoulli’s equation can then be written in the form of a boundary 
condition 

(4) 

on the free surface z = f (r,  t )  for 0 < r < 1 and t > 0. In  this equation H is some 
average height and for convenience we choose C(t) = Po/p - a(t) Hgo. The co- 
ordinates have been normalized by dividing distances by ro, time by (ro/go)i 
and the velocity potential by (rigo)*. Laplace’s equation and the boundary con- 
ditions (2) remain invariant under this normalization. 

The remaining equation, which together with (4) relates the motion of the 
surface to tbe potential, follows from v = (vl, v2) = dr/dt where r ( t )  is a point in 
the fluid corresponding to (r,  z )  and t has been introduced as a parameter. This 
equation for points on the surface z = f (r,  t )  can be written in component form 
with 

as dr/dt = v1 = q+, df/dt = v2 = q5z. (5) 

df/dt = f i  +fr(dr/dt), 

Using the fact that the total derivative 

these equations ( 5 )  can be combined into the single fist-order partial differential 
equation 

(5 ’ )  

on z = f ( r , t )  for 0 < r < 1 and t 2 0. The curves r = r(t)  and z = f ( r ( t ) , t )  satis- 
fying (5) are then the characteristic curves of the partial differential equation 
(5’) (Courant & Hilbert 1962, p. 62). 

The following initial conditions are imposed: 

f(r,O) =f0(r) for 0 < r < 1, 

$ ( T , E ,  0 )  = 0 for 0 < T < 1, 0 < x < f0(r), } (6) 
and a(0) = 0. 

Laplace’s equation (l), together with the boundary conditions (2), (4), and (5) 
or (5’) and the initial conditions (6) define the free surface boundary-value 
problem to be solved. 

20-2 
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If surface tension is taken into account, the fluid pressure P ( r ,  8, z, t )  at the 
surface is no longer equal to the constant Po but instead satisfies the relation 

P=P,-“ -+- , Gl a 
where (r is the surface tension and R, and R2 are the principal radii of curvature 
of the surface (Landau & Lifshitz 1959, p. 231). The radii of curvature are related 
to r and f ( r ,  t )  by the equations 

Including the surface tension term in Bernoulli’s equation (3) leads to the 
following equation 

212 Po 
2 P  

#t = a(t)goz----++(t)+- 

on the free surface x = f ( r ,  t )  (0 < r < 1, t 2 0). A convenient normalization when 
surface tension is being taken into account is to divide distances by r,, time by 
[pG/u(  1 +B)]* and the velocity potential by [( 1 + B )  uro/p]* where B = pr tgo/r  
is a dimensionless number. The above equation then becomes 

on the surface x = f ( r ,  t )  and as before C ( t )  = ( P o / p )  - a(t) Hg, has been chosen for 
convenience. Laplace’s equation and the boundary conditions ( 2 )  remain in- 
variant under this normalization. This equation then replaces the free-surface 
boundary condition (4) when surface tension is taken into account. 

The surface tension term in equation (7) is included in the computation as a 
smoothing term, its value being computed from the previous behaviour of the 
surface shape as described in the next section. 

3. Method of solution 
The approach taken in this paper is to develop a series representation for 

the velocity potential satisfying Laplace’s equation in the interior and the bound- 
ary conditions ( 2 )  and to determine the time-dependent coefficients numerically 
by imposing the free surface-boundary conditions (4) and (5 ) .  

The representation for the velocity potential is determined by a separation of 
variables approach. It is assumed that 

w, z, t )  = +( t )  R(r )  m). 
This leads to the following ordinary differential equations and boundary con- 
ditions for R(r)  and Z(z): 

R”+( l / r )R’+KR = 0, R’(0) =&!’(I) = 0 

and z”-Kz = 0, z’(0) = 0. 

This set of equations has a non-zero solution for a countable number of values of 
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the constant K ;  since Laplace's equation is a linear differential equation, a 
linear combination of these solutions is a formal solution, i.e. the velocity 
potential is given by 

and the velocity components are given by 

where Jo(Anr) and Jl(Anr) are the zeroth and first-order Bessel functions respec- 
tivelyandA,(n = 0,1 ,2 ,  ...), aretherootsofJ,(A,) = O;i.e.Ao = O,A, = 3.8317 ..., 
etc. A direct proof of convergence of this series is not made; rather, the plausi- 
bility of convergence of an elliptic partial differential equation on a square 
(to which the present problem can be transformed) is presented in. the Appendix. 

A numerical procedure for approximating the coefficients using the free 
surface-boundary conditions is now described. First, let 

Bernoulli's equation, (4), can then be written in the form 

W 

The set of functions Fn(r, t )  (n = 0,1,2,  .. .), is orthonormalized with the 
weight function w(r) = r on [ O ,  11 for each t > 0 to obtain the orthonormal set 
Gn(r, t )  ( n  = 0 ,1 ,2 ,  ...). The orthonormal set can be written in terms of the 
original functions 

n 

m = O  
Gn(r,  t )  = C anm(t) Fm(r7 t )  (n = 0,1,2, * . * ) 7  (12) 

and conversely the original functions can be written in terms of the orthonor- 
malized functions 

m 

m=O 
1P,(rtt) = Z bnm(t)G,(r,t) ( n  = 0,1 ,2> * * * ) ,  (12') 

where for each n 
in terms of the time-dependent inner products 

0, the a,,(t) and the b,,(t) (m = 0, 1 ,2 ,  .. ., n),  can be written 
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as is exhibited in the following sequence of equations (cf. Walsh 1956, p. 113 
for the time-independent case) : 

G0(r, t )  = Po(r, t )  = 1, 

G&, t )  = q r ,  t ) / (Pl ,  PlP, 

G2b.9 t )  = PAT, t )  - (4, G1) Gl@, t)/[(P2, 4,) - 0 7 2 ,  GJ2l*, 
.................................................................. 

Bernoulli's equation can then be written in the equivalent form 

m 

n=O 
z y( t )  Gn@, t )  = B(r, t ) ,  

m 

where 

By virtue of the orthonormality of the functions Gn(r, t ) ,  it  follows that 

yn(t) = 1; rGn(r, t )B(r ,  t ) d r  ( n  = 0, 1,2,  ...). (15) 

The series (8) for the velocity potential is now truncated after N terms and the 
first N coefficients are determined by a numerical algorithm which involves 
evaluating the definite integrals (13) and (15) and solving a system of first-order 
ordinary differential equations at each time step. Truncating the series (14) 
after N terms, the coefficients Ck(t) (n = 0, . . . , N - 1) can be written in terms of the 
y,(t)andtheb,,(t)(n= O,. . . ,N-1;  m = n ,  ..., N-1)whichinturnaregivenin 
terms of the $ P + N  definite integrals appearing in equations (13) and (15), 
whose integrands depend upon Cn(t) (n = 0, . . . , N - l), r(t) and f ( r ( t ) ,  t )  (using 
equations (€9, (lo), (12), and (15)). In  other words 

CL(t) =Fa(CJ,r) ( n =  O,... ,N-l), 

where for each n, k = 0, ..., N - 1. These equations together with (5) for a 
finite number of points (rm(t) ,  fm(t))  (m = 1, . .., M )  on the free surface can be 
written as a first-order autonomous system 

3 = F ( z ) ,  (16) 

where 4 t )  = (C,(t), r,(t), fm(t)) and F(.) = (%,(.), #%4, $Z'"'(.)) 
(n = 0, ..., N -  1) and (m = 1, ..., M ) ,  and wheref,(t) =f(r,(t),t). The functions 
q5im) and $2,) (m = 1, . . ., M ) ,  are defined in terms of x by the series (9); i.e. 

The initial conditions used in the solution of (16) are determined by the 
assumption that the fluid is initially at rest and by a knowledge of the initial 
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shape of the free surface; i.e. we set C,(O) = 0 ( n  = 0,  . . . , N - I), and choose some 
distribution of points on the given initial surface, (rm(0),fm(O)) (m = 1, ..., M ) .  
The 3N2+N definite integrals, (13) and (15) are then evaluated and the pth 
order system of first-order ordinary differential equations (16), wherep = M + N ,  
is solved by a predictor-corrector method, the 'modified Euler' method, to move 
ahead an increment of time. The time-dependent coefficients and the motion of 
individual particles on the free surface are determined in this way. 

This method has the advantage of not requiring the function describing the 
surface shape f ( r ,  t )  to be single valued. The choice of the numbers M and N 
and of the initial distribution of points on the surface will be discussed in the 
next section. 

If surface tension is taken into account as a smoothing term, the first and 
second partial derivatives of f ( r ,  t )  with respect to r must be evaluated and in- 
cluded in the Bernoulli equation as in equation (7). This was originally done by a 
differencing scheme. This however was not accurate enough to give meaningful 
results. The surface tension term 

was then considered as an operator on some function space and the first variation 
in T corresponding to a small variation in f(r, t ) ,  Sf(r, t )  = f ( r ,  t + At) -f(r, t ) ,  
resulting from a time increment At was found; i.e. 

where (Sf), = $,At + O(At2), since from ( 5 ) ,  Sf = $,At + O(Atz).  The ratio of the 
remainder to the first-order correction is proportional to At and this approxima- 
tion can therefore be made sufficiently accurate by making At small enough. 
This is the method used in computing the surface tension term in the numerical 
programme. 

For hemispherical initial shapes of radius R 

f&r) = R - (R2 - r2)*. (17) 

This function satisfies the ordinary differential equation 

and it is convenient to subtract the constant 2/R from the Bernoulli equation (7)  
and add it to the function C(t) so that Tf is initially zero. 

4. Numerical results 
The numerical results are for two basic cases: 
(1) a(t)  = 1.0 for t > 0, i.e. the cylinder is being accelerated in such a manner 

that the fluid runs to the opposite end of the container (figures 2-6). This is 
characterized by the case of an upside-down cylindrical container at the earth's 
surface, gravity acting to pull the liquid out of the container. 
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(2) a(t) = - 1.0 fort > 0, i.e. the cylinder is being accelerated in such a manner 
that the fluid remains in the bottom of the cylinder (figures 7-9). This is charac- 
terized by the case of an upright cylindrical container of liquid at the earth's 
surface, gravity acting to keep the liquid in the container. 

These cases were considered for different initial surface shapes and for varying 
degrees of surface tension from p = B-1 = 0 (no surface tension) to ,8 = 0-05, 
a typical example of which is water in a 0-8in. diameter cylinder.' In  the latter 
case there is a significant amount of surface tension although the acceleration 
force is still dominant. The majority of the cases were run with a hemispherical 
initial shape, defined by equation (177, for different values of the radius22 = see 8,, 
where 8, is the initial contact angle that the surface makes with the wall. A 
summary of the cases studied is given in table 1, where t is given in seconds for 
ro given in feet. 

Figure 
no. 

2 
- 
- 
5 
6 

7 
8 
9 

44 
+ 1.0 
+ 1.0 
+ 1.0 
+ 1-0 
+ 1.0 

- 1.0 
- 1-0 
-1.0 

Initial 
P shape H 00 

0 
0 
0 
0.005 
0.05 

0 
0.05 
0-05 

Hemispherical 
Hemispherical 
Hemispherical 
Hemispherical 
Flat with 
meniscus 

Hemispherical 
Hemispherical 
Hemispherical 

2.0 
2.0 
0.4 
2.0 
2.0 

2.0 
2.0 
2.0 

45" 
22.5" 
45" 
45O 
0" 

45O 
45" 
15" 

TABLE 1. Summary of the cases studied 

At/r,,i 

0.0177 
0-0177 
0.0266 
0.0177 
0.0350 

0.0266 
0.0266 
0.0266 

0.40 
0.48 
0.48 

The values of M and N that were used were determined by experiment. It 
was found that good results were obtained with the number of points in the r-mesh 
M = 45, the distribution being denser near the wall, i.e. near r = 1. After making 
runs with N = 5, 6, 10, 11, 15, and 16 terms in the series, it appeared that ten 
terms in the series would be sufficient to obtain reasonably accurate results. This 
is exhibited in figure 4 where the coefficients for one of the runs, starting with a 
hemispherical initial shape and using ten terms, are plotted as a function of time, 
and by the fact that carrying more terms than ten did not affect the value of the 
first ten terms significantly. The variation in the volume of the liquid is a measure 
of the accuracy of computation. It was found that with the choice of M and N 
indicated above, the volume varies by less than 0.01 yo per iteration for the largest 
time step that was used. 

In  the course of the study, large amplitude motions were calculated and some 
interesting phenomena occurred. For example, in figure 2, for the casewithgravity 
acting to pull the fluid out of the container and no surface tension effect present, 
breakers similar to those in Stoker (1957, p. 367) developed at the wall of the con- 
tainer. Figures 2 and 5-9 are reproductions of piecewise linear plots made by the 
SC 4020 plotter directly from the computer results, and the breakers in figure 2 
therefore look somewhat jagged. Figure 3 shows the development of the breakers 
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21 
3.0 

I 
-1.0 0 

3i3  

r 
3 
c 

FIGURE 2. Hemispherical initial shape with H = 2-0, a(t) = + 1, 
p = 0, 0, = 45' and At = 0.0177 yo* see. 

in detail for the case in figure 2 with a smaller time step. The coefficients 
C,(t) ( n  = 0, . . . ,9),  for this case are plotted in figure 4 as a function of time. The 
velocity potential and velocity components at any point in the fluid for 

0 < t < 
for this case can be computed from equations (8) and (9) using these values for 
the coefficients. It was observed that varying the time step for this case had little 
or no effect on the overall behaviour and the breakers appeared at almost exactly 
the same time when different time steps were used. As an indication of the 
7094 computer time required, the total time of computation for the fluid motion 
shown in figure 2 was 6 minutes. However, not every surface shape that was 
computed could be shown in the figures presented here and still retain clarity. 
In figure 2, for example, every fifth shape that was computed is shown in the 
figure. 

The time at which the breakers occurred was found to be very sensitive to 
small changes in the initial shape, i.e. to small amplitude variations in the initial 
shape. For example, a deviation from the hemispherical shape of figure 2 by 
2 yo at two or three points on the surface caused a 20 % decrease in the time at 
which the breakers occurred. The qualitative behaviour was much the same for 
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2.8 

2-75 

2. 

2.65 

2.6 
0.90 ( 
1 
2 c  

FIQTJRE 3. The breakers at the wall for the case in figure 2. 

smaller contact angles, B,, the time at which the breakers occurred being propor- 
tionately smaller (table 1). The qualitative behaviour was also very much the 
same for different volumes of fluid although a bottom effect was observed in the 
case of small volumes. The time at which the breakers occurred did not differ 
much for different volumes. 

Surface tension had a smoothing effect which eliminated the breakers for 
sufficiently large p; however, in the computation the surface tension had the effect 
of over-correcting any unduly large curvature in the surface such aa that which 
develops when breakers start to form. This results in undamped oscillations in 
this term. This was eliminated by going to a variable time step in order to maintain 
the growth of the surface tension term smaller than some prescribed bound. 
This led to a reduction in the time step to so small a value as to make it impractical 
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to continue the computation. Nevertheless, some interesting results were 
obtained before this occurred (see for example figure 5,  which corresponds to 
the case shown in figure 2 with a small surface tension effect included). The 
smoothing effect is particularly evident near the wall of the container. 

The case of a nearly flat initial surface shape with a meniscus at the wall was 
next considered with a(t) = + 1.0 and 1 = 0.05. This resulted in a considerable 

R. E .  Moore and L. M .  Perko 

1.5 

r 
c 

0 0 1.0 

FIGURE 5. Hemispherical initial shape with H = 2.0, a(t) = + 1, p = 0.005, 
8, = 45" and At = 0.0177 To* see. 

-1.0 0 1.0 

FIGURE 6. Flat initial shape with a meniscus at the wall, H = 2.0, 
a($) = + 1, p = 0.05, O0 = 0' and At = 0.0350 ro* sec. 
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change in the surface shape before the time step was reduced to a prohibitively 
small value and indicates the ability of the programme to handle zero-degree 
contact angle (figure 6). Without surface tension the initially flat surface moved 
very little before breakers developed at the wall. 

The case of the acceleration growing linearly with time, a(t) = kt, was also 
considered with a hemispherical initial shape and no surface tension effect, 
/3 = 0. The results were qualitatively the same as those depicted in figure 2; 
the time at which the breakers occurred increased with decreasing k. 

-1.0 0 1.0 

FIGURE 7. Hemispherical initial shape with H = 2.0, a ( t )  = - 1, /3 = 0, 
8, = 45" and At = 0.0266 poi sec. 

- 1.0 0 1.0 

FIGURE 8. Hemispherical initial shape with H = 2.0, a ( t )  = - 1, /3 = 0.05, 
0, = 45' and At = 0.0266 r,* sec. 

The case of gravity acting to keep the fluid in the container, a( t )  = - 1, was 
next considered for a hemispherical initial shape. Some very interesting kinds of 
oscillations were obtained. The relative size of the surface tension, gravity and 
the initial contact angle determined whether or not a splash developed on the 
surface. In  figure 7, for example, with no surface tension, /3 = 0, and an initial 
contact angle of 45", a crown-shaped splash developed a t  the centre of the fluid. 
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( b )  

FIGURE 9. (a )  Hemispherical initial shape with H = 2-0, a(t) = - 1, p = 0.05, 
0, = 15" and At = 0.0266 ro* sec. (b)  A continuation of figure 9 (a). 

It was found that with the initial contact angle equal to 45" and a small surface 
tension effect, p = 0.005, an example ofwhichisgivenbywaterina 2.5in. cylinder, 
the surface goes through one and a half oscillations before a splash starts to 
develop. With the initial contact angle again equal to 45" and a larger surface 
tension effect, ,8 = 0.05, e.g. water in a 0.8in. diameter cylinder, no splash 
develops and several complete oscillations of the surface were computed. Half of 
the first complete oscillation is shown in figure 8. It is interesting to note that 
the average period of oscillation, T = 0-485 r,* see (r, in ft.), is somewhat larger 
than that given by the linear theory, T = 0.434 To* sect. 

In  the final case witha(t) = - 1.0, ,!? = 0.05 and 8, = 15" a splash again develops 
due to the larger amount of potential energy in the initial surface shape even 
though the amount of surface tension is the same as in the previous case (figures 9 

t Communicated by P. Concus. 
(4 and (b ) ) .  
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Appendix 

formally self-adjoint elliptic operators of the type 
Many authors have considered the problem of eigenfunction expansions for 

in time independent regions where 
a(x, t )  = det [a,&, t ) ]  = det [aif(x, t ) ] - l ,  

and the coefficients are assumed to have certain smoothness properties. Typical 
boundary conditions have the form 

a+ (2, t )  
a@, t )  t )  + PCX, t )  -7&- = G(z, t ) .  

(See, for example, Ito 1957, pp. 55-102, where sufficient conditions for such 
expansions have been given.) 

The operator A is the type that is obtained in the problem being considered 
here under the transformation of co-ordinates p = x/f(r, t)  which takes a time 
dependent domain of the type shown in figure 1 into a square. In  fact, for a 
general admissible transformation of co-ordinates with the Reimann metric 
given by ds2 = aij(x,t)dxidxj, the Laplacian has the form given above with 
c(x, t )  = 0. For the transformation in question with x = ( r , p ,  0 )  
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and det [a,j (x, t)] = r2f2(r, t).  [ U , ~ ( S ,  t ) ]  is therefore a positive definite matrix 
provided rf(r,t) .I: 0. 

R. E. Moore and L. M .  Perk0 

Let W , P ,  t )  = &r,pf(r, t ) ,  t) .  

Then fr must satisfy the elliptic partial differential equation 

and boundary conditions which may be put into a form similar to the above: 

r = 0 , 1  for O , < p < 1 ,  
p = O  for 0~ r < 1, 

and @(r, 1, t )  = G(r, t )  for 0 < r < 1, and t 2 0, where 

and where it has been assumed for convenience that the average height H = 1. 
The function f ( r ,  t )  must satisfy the first order partial differential equation 

for 0 < r < 1 and t 2 0. The continuity conditions required in Ito (1957) as 
well as the conditions such that the transformation be admissible are satisfied if 
f ( r ,  t )  is a non-zero single-valued function of r and is sufficiently smooth for all 
0 0. With the problem in this form, it seems plausible that, 
using the theorem on p. 89 of Ito (1957), the convergence of the series (8) can be 
established. 

r < 1 and each t 


